SUBTRANSIENT - QUADRATURE AXIS X"a

SYNCHRONOUS - QUADRATURE AXIS X_q

TRANSIENT - SATURATED X'd

SYNCHRONOUS - DIRECT AXIS X_d

JULY 01, 2020

For Help Desk Phone Numbers Click here

Selected Model

Genset Rating (kW): 195.0 Engine: 3306 **Generator Frame: 447** Line Voltage: 400 Genset Rating (kVA): 243.0 Phase Voltage: 230 Fuel: Diesel **Generator Arrangement:** 7W8746 Frequency: 50 **Excitation Type:** Self Excited Pwr. Factor: 0.8 Rated Current: 350.7 **Duty: PRIME** Connection: SERIES STAR **Application:** EPG Status: Current Version: 39094/38912/38261/9362

Spec Information

Generator Specification		Generator Efficiency		
Frame: 447 Type: SR4	No. of Bearings: 1	Per Unit Load	kW	Efficiency %
Winding Type: RANDOM WOUND Flywheel: 14.0		0.25	48.8	90.5
Connection: SERIES STAR	Housing: 1	0.5	97.5	93.7
Phases: 3	No. of Leads: 10	0.75	146.3	94.3
Poles: 4	Wires per Lead: 1	1.0	195.0	94.1
Sync Speed: 1500	Generator Pitch: 0.7333	1.1	214.5	93.9
Reactances		Per Unit	C)hms
SUBTRANSIENT - DIRECT AXIS X" _d		0.1659	0	.1089

NEGATIVE SEQUENCE X_2	0.1798	0.1180	
ZERO SEQUENCE X_0	0.0521	0.0342	
Time Constants		Seconds	
OPEN CIRCUIT TRANSIENT - DIRECT AXIS T'd0		1.5280	
SHORT CIRCUIT TRANSIENT - DIRECT AXIS T'd		0.1368	
OPEN CIRCUIT SUBSTRANSIENT - DIRECT AXIS T"d0		0.0069	
SHORT CIRCUIT SUBSTRANSIENT - DIRECT AXIS T''_d		0.0050	
OPEN CIRCUIT SUBSTRANSIENT - QUADRATURE AXIS T''_{q0}		0.0070	
SHORT CIRCUIT SUBSTRANSIENT - QUADRATURE AXIS T" $_{ m q}$		0.0053	
EXCITER TIME CONSTANT T _e		0.1272	
ARMATURE SHORT CIRCUIT To		0.0203	

0.1938

0.3111

3.4753

2.0518

0.1272

0.2042

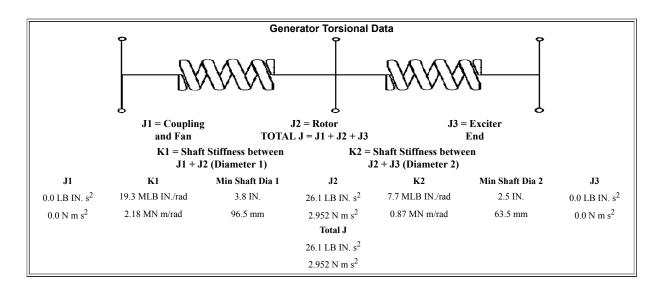
2.2812

1.3468

Short Circuit Ratio: 0.4	Stator Resistance = 0.032 Ohms Field Resistance = 0.762 Ohms					
Voltage Regulation		G	Senerator Exc	itation		
Voltage level adjustment: +/-		5.0%		No Load	Full Load,	(rated) pf
Voltage regulation, steady stat	e: +/-	0.5%			Series	Parallel
Voltage regulation with 3% sp	eed change: +/-	0.5%	Excitation voltage:	6.32 Volts	32.11 Volts	Volts
Waveform deviation line - line	, no load: less than	5.0%	Excitation current	1.56 Amps	6.52 Amps	Amps
Telephone influence factor: les	ss than	50				

Selected Model

Engine: 3306 Generator Frame: 447 Genset Rating (kW): 195.0 Line Voltage: 400 Fuel: Diesel **Generator Arrangement:** 7W8746 Genset Rating (kVA): 243.0 Phase Voltage: 230 Frequency: 50 **Excitation Type:** Self Excited Pwr. Factor: 0.8 Rated Current: 350.7 **Duty:** PRIME **Connection: SERIES STAR Application:** EPG Status: Current Version: 39094/38912/38261/9362


Generator Mechanical Information

Center of Gravity			
Dimension X	-486.2 mm	-19.1 IN.	
Dimension Y	0.0 mm	0.0 IN.	
Dimension Z	0.0 mm	0.0 IN.	

- "X" is measured from driven end of generator and parallel to rotor. Towards engine fan is positive. See General Information for details
- . "Y" is measured vertically from rotor center line. Up is positive.
- "Z" is measured to left and right of rotor center line. To the right is positive.

Generator WT = 762 kg * Rotor WT = 260 kg * Stator WT = 502 kg1,680 LB 573 LB 1,107 LB

> Rotor Balance = 0.0508 mm deflection PTP Overspeed Capacity = 180% of synchronous speed

Selected Model

Engine: 3306 Generator Frame: 447 Genset Rating (kW): 195.0 Line Voltage: 400 Fuel: Diesel **Generator Arrangement:** 7W8746 Genset Rating (kVA): 243.0 Phase Voltage: 230 Frequency: 50 **Excitation Type:** Self Excited Pwr. Factor: 0.8 Rated Current: 350.7 Duty: PRIME Connection: SERIES STAR **Application:** EPG Status: Current

-- Version: 39094 /38912 /38261 /9362

Generator Cooling Requirements -Temperature - Insulation Data

Cooling Requirements:Temperature Data: (Ambient 40 0 C)Heat Dissipated: 12.2 kWStator Rise: $105.0 \, ^{0}$ CAir Flow: $53.4 \, \mathrm{m}^{3}/\mathrm{min}$ Rotor Rise: $105.0 \, ^{0}$ C

Insulation Class: H

Insulation Reg. as shipped: $100.0 \text{ M}\Omega$ minimum at $40 \text{ }^{0}\text{C}$

Thermal Limits of Generator

 Frequency:
 50 Hz

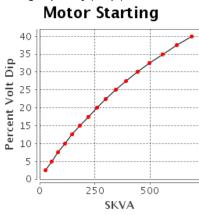
 Line to Line Voltage:
 400 Volts

 B BR 80/40
 208.0 kVA

 F BR -105/40
 250.0 kVA

 H BR - 125/40
 275.0 kVA

 F PR - 130/40
 275.0 kVA

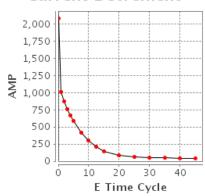

Selected Model

Engine: 3306 **Generator Frame: 447** Genset Rating (kW): 195.0 Line Voltage: 400 Fuel: Diesel **Generator Arrangement:** 7W8746 Genset Rating (kVA): 243.0 Phase Voltage: 230 Frequency: 50 **Excitation Type:** Self Excited Pwr. Factor: 0.8 Rated Current: 350.7 **Duty:** PRIME **Connection: SERIES STAR Application:** EPG Status: Current

Version: 39094 /38912 /38261 /9362

Starting Capability & Current Decrement Motor Starting Capability (0.4 pf)

SKVA	Percent Volt Dip
27	2.5
54	5.0
84	7.5
115	10.0
148	12.5
183	15.0
220	17.5
259	20.0
301	22.5
345	25.0
393	27.5
444	30.0
498	32.5
557	35.0
621	37.5
690	40.0
690	40.0



Current Decrement Data

E Time Cycle	AMP
0.0	2,081
1.0	1,011
2.0	871
3.0	762
4.0	667
5.0	584
7.5	417
10.0	296
12.5	209
15.0	146
20.0	85
25.0	61
30.0	51
35.0	47
40.0	45

44

Current Decrement

Instantaneous 3 Phase Fault Current: 2081 Amps

45.0

Instantaneous Line - Line Fault Current: 1729 Amps

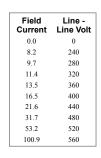
Instantaneous Line - Neutral Fault Current: 2603 Amps

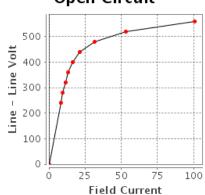
Selected Model

Engine: 3306 Generator Frame: 447

Fuel: Diesel Generator Arrangement: 7W8746

Frequency: 50 Excitation Type: Self Excited

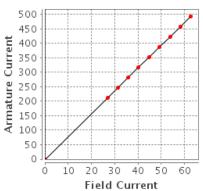

Duty: PRIME Connection: SERIES STAR


Genset Rating (kW): 195.0 Line Voltage: 400
Genset Rating (kVA): 243.0 Phase Voltage: 230
Pwr. Factor: 0.8 Rated Current: 350.7
Application: EPG Status: Current

Version: 39094/38912/38261/9362

Generator Output Characteristic Curves Open Circuit Curve

Open Circuit



Short Circuit Curve

Short Circuit

Field Current	Armature Current
0.0	0
26.9	211
31.4	246
35.8	281
40.3	317
44.8	352
49.3	387
53.8	422
58.3	457
62.7	493

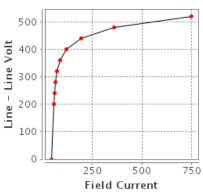
Selected Model

Engine: 3306 Generator Frame: 447

Fuel: Diesel Generator Arrangement: 7W8746

Frequency: 50 Excitation Type: Self Excited

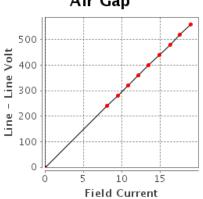
Duty: PRIME Connection: SERIES STAR


Genset Rating (kW): 195.0 Line Voltage: 400
Genset Rating (kVA): 243.0 Phase Voltage: 230
Pwr. Factor: 0.8 Rated Current: 350.7
Application: EPG Status: Current

-- Version: 39094/38912/38261/9362

Zero Power Factor Curve

Zero Power

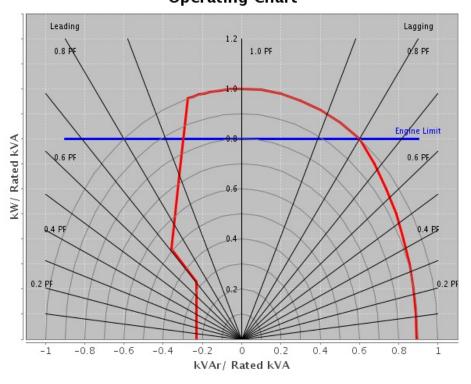

Field Current	Line - Line Volt
44.8	0
56.5	200
59.0	240
63.0	280
70.2	320
85.2	360
118.0	400
191.9	440
360.5	480
747.2	520

Air Gap Curve

Air Gap

Field Current	Line - Line Volt
0.0	0
8.1	240
9.5	280
10.8	320
12.2	360
13.5	400
14.9	440
16.3	480
17.6	520
19.0	560

Selected Model


Engine: 3306 **Generator Frame: 447** Fuel: Diesel **Generator Arrangement:** 7W8746 Frequency: 50 Excitation Type: Self Excited **Duty:** PRIME

Connection: SERIES STAR

Genset Rating (kW): 195.0 Line Voltage: 400 Genset Rating (kVA): 243.0 Phase Voltage: 230 Pwr. Factor: 0.8 Rated Current: 350.7 **Application:** EPG Status: Current

Version: 39094/38912/38261/9362

Reactive Capability Curve Operating Chart

Selected Model

Engine: 3306 Generator Frame: 447
Fuel: Diesel Generator Arrangement: 7W8746
Frequency: 50 Excitation Type: Self Excited
Duty: PRIME Connection: SERIES STAR

Genset Rating (kW): 195.0 Line Voltage: 400
Genset Rating (kVA): 243.0 Phase Voltage: 230
Pwr. Factor: 0.8 Rated Current: 350.7
Application: EPG Status: Current

-Version: 39094/38912/38261/9362

DM7802

GENERATOR GENERAL INFORMATION

I. GENERATOR MOTOR STARTING CAPABILITY CURVES

A. THE MOTOR STARTING CURVES ARE REPRESENTATIVE OF THE DATA OBTAINED BY THE FOLLOWING PROCEDURE:

- 1. THE CATERPILLAR GENERATOR IS DRIVEN BY A SYNCHRONOUS
- 2. VARIOUS SIZE THREE PHASE INDUCTION MOTORS (NEMA CODE F) ARE STARTED ACROSS THE LINE LEADS OF THE UNLOADED GENERATOR.
- 3. THE RESULTING VOLTAGE DIPS ARE RECORDED WITH AN OSCILLOSCOPE.
- 4. MOTOR HORSEPOWER HAS BEEN CONVERTED TO STARTING KILOVOLT AMPERES (SKVA).
- 5. RECORDED VOLTAGE DIPS HAVE BEEN EXPRESSED AS A OF GENERATOR RATED VOLTAGE.

II. USE OF THE MOTOR STARTING CAPABILITY CURVES.

A. CALCULATE THE SKVA REQUIRED BY THE MOTOR FOR FULL VOLTAGE STARTING ACROSS THE LINE IF THE VALUE IS NOT LISTED ON THE MOTOR DATA PLATE.

1. MOTORS CONFORMING TO NEMA STANDARDS

MULTIPLY THE MOTOR HORSEPOWER BY THE NEMA SKVA/HP

FIGURE. FOR NEMA CODE F,USE 5.3 SKVA/HP; FOR NEMA

CODE G, USE 6.0 SKVA/HP.

2. ALL OTHER MOTORS:

MULTIPLY THE RATED VOLTAGE BY THE LOCKED ROTOR AMPERE

AND BY 0.001732. (IF THE LOCKED ROTOR AMPERES ARE NOT

LISTED, MULTIPLY THE FULL LOAD (RUNNING) AMPERES BY

B. USE THE ABOVE SKVA WITH THE MOTOR STARTING TABLE.

1. ACROSS LINE STARTING:

READ ACROSS THE ROW OF "ACROSS THE LINE STARTING SKVA

IF THE DESIRED VALUE OF SKVA IS NOT GIVEN, CALCULATE

THE DIP BY FINDING THE PROPER SKVA INTERVAL AND

INTERPOLATING AS FOLLOWS:

SKVA1 IS THE SKVA TABLE ENTRY JUST SMALLER THAN

THE DESIRED SKVA, DIP1 IS THE DIP FOR SKVA2, AND

SKVA2 IS THE SKVA TABLE ENTRY JUST GREATER THAN

THE DESIRED SKVA. THE DIP (IN PERCENT) AT THE

DESIRED SKVA IS:

DIP = DIP1 + (SKVA - SKVA1) * 2.5 /

(SKVA2 - SKVA1)

NOTE: VOLTAGE DIPS GREATER THAN 35% MAY CAUSE MAGNETIC

CONTACTORS TO DROP OUT.

2. REDUCED VOLTAGE STARTING:

REFER TO THE FOLLOWING TABLE. MULTIPLY THE CALCULATE ACROSS LINE SKVA BY THE MULTIPLIER LISTED FOR THE SPECIFIC STARTING METHOD. APPLY THE RESULT TO THE STARTING TABLE AS IN II A, TO CALCULATE THE EXPECTED VOLTAGE DIP:

50

TYPE OF REDUCED MULTIPLY
VOLTAGE STARTING LINE SKVA BY

80% TAP .80 65% TAP .65 50% TAP

45% TAP 45

Wye start, delta run .33

AUTOTRANSFORMER

80% TAP .68 65% TAP .46 50% TAP .29

NOTE: REDUCE VOLTAGE STARTING LOWERS THE MAXIMUM

REOUIRED MOTOR skVA.

3. Part winding starting:

Most common is half-winding start, full-winding run.

Multiply the full motor, accross line starting skVA

by 0.6. Apply the result to the selected curve as

in ii. A above. Read the expected voltage dip, for the required skVA.

III.DEFINITION:

A. GENERATOR TERMS

MODEL: Engine Sales model

ENG TYPE: DI = Direct Injection,

NA = Naturally aspirated, etc

Running frequency, hertz HZ:

RATING TYPE: PP, SB (prime power or standby) KW:

Base rating electrical kilowatts (ekW)

VOLTS: Rating terminal, line to line

GEN ARR: Cat generator arrangement part number

GEN FRAME: Generator frame size designation

CONN: Generator output connection

(star, wye, delta, ect.)

POLES: Number of pole pieces on rotor.

(eg. A 4 pole generator run at 1800)

RPM will produce 60 Hz alternating current. A 6 pole generator run at 1200 RPM will produce 60 Hz alternating current.)

B. GENERATOR TEMPERATURE RISE:

The indicated temperature rise indicated the NEMA limits for standby or prime power applications. These rises are used for calculating the losses and efficiencies and are not necessarily indicative of the actual temperature rise of a given machine.

C. CENTER OF GRAVITY

The specified center of gravity is for the generator only. For single bearing, and two bearing close coupled generators, the cent er of gravity is measured from the generator/engine flywheel housing i nterface and from the centerline of the rotor shaft.

For two bearing, standalone generators, the center of gravity is measu red from the end of the rotor shaft and from the centerline of the rot or shaft.

For two bearing, standalone generators, the center of gravity is measu red from the end of the rotor shaft and from the centerline of the rot or shaft

D. GENERATOR DECREMENT CURRENT CURVES

The generator decrement current curve gives the symmetrical current supplied by the generator for a three phase bolted fault at the generator terminals. Generators equipped with the series boost attachment or generators with PM excitation system will supply 300% of rated current for at least 10 seconds.

E. GENERATOR EFFICIENCY CURVES

The efficiency curve is representative of the overall generator efficiency over the normal range of the electrical load and at the specified parameters. This is not the overall engine generator set efficiency curve.

Caterpillar Confidential: Green

Content Owner: Commercial Processes Division Web Master(s): <u>PSG Web Based Systems Support</u> Current Date: 7/1/2020, 2:08:59 PM

© Caterpillar Inc. 2020 All Rights Reserved.

Data Privacy Statement

<u>Data Privacy Statement</u>.