		Sele	cted Model					
Engine: 3306	gine: 3306 Generator Frame: 446 Genset Ra		ting (kW): 200.0		Line Voltage: 440			
Fuel: Diesel	Diesel Generator Arrangement: 1093787 Genset Rat		ting (kVA): 250.0		Phase Voltage: 254			
Frequency: 60	Excitation Type: Perman	nent Magnet	Pwr. Factor: 0.8			Rated Current: 328.0		
Duty: PRIME	Connection: SERIES ST	AR	Application: EPG			Status: Current		
	Version: 39094 /38912 /40602 /13829							
[Constat Speci	Spec	Informatio	n I	Conor	tor Effici		
Generator Specification				Per Un	it Load	kW	Efficiency %	
Winding Type: RANDOM WOUND Flywheel: 14.0				0.1	25	50.0	90.5	
Connection: SERIES STAR Housing: 1			0.	.5	100.0	93.3		
Phases: 3 No. of Loader 12			0.1	75	150.0	93.5		
Poles: 4	-	Wires per Lead: 2		1.	0	200.0	92.8	
Sync Sp	eed: 1800	Generator Pitch: 0	.75	1.	.1	220.0	92.2	
Reac	TANCES	711		Per Unit Ohms				
SUBT	RANSIENT - DIRECTARIS 2				0.2110	0	1822	
TDAN	KANSIENT - QUADRATURE	AXIS X q			0.2300	0	2047	
	SIENT - SATUKATED A d	7			4.0754	0	1560	
SYNCHRONOUS - DIRECT AXIS X_d					2 4112	1	8672	
STINCTRONOUS - QUADRATURE AXIS X_q					0 2240	0	1735	
ZFRO	SEQUENCE X ₀				0.0610	0	0472	
					0.0010			
Time Constants Seconds								
$\begin{array}{c} \text{OPEN CIRCUIT TRANSIENT - DIRECT AXIS } \\ SHOPE CIRCUIT TRANSIENT - DIRECT AXIS T \\ \text{SHOPE CIRCUIT TRANSIENT - DIRECT AXIS T \\ \text{OPEN CIRCUIT T$								
SHORT CIRCUIT TRANSIENT - DIRECT AXIS Γ_d 0.1619								
OPEN CIRCUIT SUBSTRANSIENT - DIRECT AXIS 1"d0 0.0043								
SHOKI CIRCUIT SUBSTRANSIENT - DIRECT AXIS T" _d 0.0035								
OPEN CIRCUIT SUBSTRANSIENT - QUADRATURE AXIS T" _{q0} 0.0045								
SHORT CIRCUIT SUBSTRANSIENT - QUADRATURE AXIS T"q 0.0037								
EXCITER TIME CONSTANT T _e 0.1144					144			
ARMATURE SHORT CIRCUIT T _a 0.0204								
Short Circu	uit Ratio: 0.45	Stator Resis	stance $= 0.03$	58 Ohms Fie	eld Resistan	nce = 0.961	Ohms	
	Voltage Regulation	l		Ge	enerator E	xcitation		
Voltage leve	el adjustment: +/-	5.0%			No Loa	d Full L	.oad, (rated) pf	f
Voltage reg	ulation, steady state: +/-	0.5%				Serie	s Parallel	
Voltage reg	ulation with 3% speed cha	nge: +/- 0.5%	Excit	tation voltage:	8.17 Volt	s 28.94	Volts Volts	
Waveform deviation line - line, no load: less than 5.0%			Exci	tation current	1.81 Amp	os 5.28	Amps Amps	
Telephone influence factor: less than 50								
		Sele	cted Model					
Engine: 3306 Generator Frame: 446 Genset		Genset Rat	set Rating (kW): 200.0		Line Voltage: 440			
Fuel: Diesel	Generator Arrangemen	t: 1093787	Genset Rat	Genset Rating (kVA): 250.0		Phase Voltage: 254		
Frequency: 60	Excitation Type: Perman	nent Magnet	Pwr. Facto	Pwr. Factor: 0.8		Rated Current: 328.0		
Duty: PRIME	Duty: PRIME Connection: SERIES STAR Application: EPG Status: Current			rrent				
					/38912 /40602 /13829			
Generator Mechanical Information								

Center of Gravity					
	Dimension X	-548.6 mm	-21.6 IN.		
	Dimension Y	0.0 mm	0.0 IN.		
	Dimension Z	0.0 mm	0.0 IN.		
 "X" is measured from driven end of generator and parallel to rotor. Towards engine fan is positive. See General Information for details "Y" is measured vertically from rotor center line. Up is positive. "Z" is measured to left and right of rotor center line. To the right is positive. 					
Generator WT = 802 kg * Rotor WT = 270 kg * Stator WT = 532 kg					
1,	768 LB	595	LB	1,173 LB	
Rotor Balance = 0.0508 mm deflection PTP					

Overspeed Capacity = 150% of synchronous speed

Engine: 3306 Fuel: Diesel Frequency: 60 Duty: PRIME Generator Frame: 446 Generator Arrangement: 1093787 Excitation Type: Permanent Magnet Connection: SERIES STAR Selected Model

Genset Rating (kW): 200.0 Genset Rating (kVA): 250.0 Pwr. Factor: 0.8 Application: EPG Line Voltage: 440 Phase Voltage: 254 Rated Current: 328.0 Status: Current Version: 39094 /38912 /40602 /13829

Starting Capability & Current Decrement Motor Starting Capability (0.4 pf)

Current Decrement Data

	Selected Model					
Engine: 3306	Generator Frame: 446	Genset Rating (kW): 200.0	Line Voltage: 440			
Fuel: Diesel	Generator Arrangement: 1093787	Genset Rating (kVA): 250.0	Phase Voltage: 254			
Frequency: 60	Excitation Type: Permanent Magnet	Pwr. Factor: 0.8	Rated Current: 328.0			
Duty: PRIME	Connection: SERIES STAR	Application: EPG	Status: Current			
			Varian: 20004 /28012 /40602 /12820			

Short Circuit Curve

Engine: 3306 Fuel: Diesel Frequency: 60 Duty: PRIME Generator Frame: 446 Generator Arrangement: 1093787 Excitation Type: Permanent Magnet Connection: SERIES STAR Selected Model Genset Rating (kW): 200.0 Genset Rating (kVA): 250.0 Pwr. Factor: 0.8

Application: EPG

Line Voltage: 440 Phase Voltage: 254 Rated Current: 328.0 Status: Current -Version: 39094/38912/40602/13829

Generator Output Characteristic Curves

	Selected Model			
Engine: 3306	Generator Frame: 446	Genset Rating (kW): 200.0		
Fuel: Diesel	Generator Arrangement: 1093787	Genset Rating (kVA): 250.0		
Frequency: 60	Excitation Type: Permanent Magnet	Pwr. Factor: 0.8		
Duty: PRIME	Connection: SERIES STAR	Application: EPG		

Reactive Capability Curve Operating Chart

Selected Model

Engine: 3306 Fuel: Diesel Frequency: 60 Duty: PRIME Generator Frame: 446 Generator Arrangement: 1093787 Excitation Type: Permanent Magnet Connection: SERIES STAR Genset Rating (kW): 200.0 Genset Rating (kVA): 250.0 Pwr. Factor: 0.8 Application: EPG

Line Voltage: 440 Phase Voltage: 254 Rated Current: 328.0 Status: Current -Version: 39094/38912 /40602 /13829

General Information

DM7802 GENERATOR GENERAL INFORMATION

I. GENERATOR MOTOR STARTING CAPABILITY CURVES A. THE MOTOR STARTING CURVES ARE REPRESENTATIVE OF THE DATA OBTAINED BY THE FOLLOWING PROCEDURE: 1. THE CATERPILLAR GENERATOR IS DRIVEN BY A SYNCHRONOUS DRIVER. 2. VARIOUS SIZE THREE PHASE INDUCTION MOTORS (NEMA CODE F) ARE STARTED ACROSS THE LINE LEADS OF THE UNLOADED GENERATOR. 3. THE RESULTING VOLTAGE DIPS ARE RECORDED WITH AN OSCILLOSCOPE. 4. MOTOR HORSEPOWER HAS BEEN CONVERTED TO STARTING KILOVOLT AMPERES (SKVA). 5. RECORDED VOLTAGE DIPS HAVE BEEN EXPRESSED AS A OF GENERATOR RATED VOLTAGE. II. USE OF THE MOTOR STARTING CAPABILITY CURVES. A. CALCULATE THE SKVA REQUIRED BY THE MOTOR FOR FULL VOLTAGE STARTING ACROSS THE LINE IF THE VALUE IS NOT LISTED ON THE MOTOR DATA PLATE. 1. MOTORS CONFORMING TO NEMA STANDARDS MULTIPLY THE MOTOR HORSEPOWER BY THE NEMA SKVA/HP FIGURE. FOR NEMA CODE F,USE 5.3 SKVA/HP; FOR NEMA CODE G, USE 6.0 SKVA/HP. 2. ALL OTHER MOTORS: MULTIPLY THE RATED VOLTAGE BY THE LOCKED ROTOR AMPERE AND BY 0.001732. (IF THE LOCKED ROTOR AMPERES ARE NOT LISTED, MULTIPLY THE FULL LOAD (RUNNING) AMPERES BY B. USE THE ABOVE SKVA WITH THE MOTOR STARTING TABLE. 1. ACROSS LINE STARTING: READ ACROSS THE ROW OF "ACROSS THE LINE STARTING SKVA IF THE DESIRED VALUE OF SKVA IS NOT GIVEN, CALCULATE THE DIP BY FINDING THE PROPER SKVA INTERVAL AND INTERPOLATING AS FOLLOWS: SKVA1 IS THE SKVA TABLE ENTRY JUST SMALLER THAN THE DESIRED SKVA, DIP1 IS THE DIP FOR SKVA2, AND SKVA2 IS THE SKVA TABLE ENTRY JUST GREATER THAN THE DESIRED SKVA. THE DIP (IN PERCENT) AT THE DESIRED SKVA IS: DIP = DIP1 + (SKVA - SKVA1) * 2.5 /(SKVA2 - SKVA1) NOTE: VOLTAGE DIPS GREATER THAN 35% MAY CAUSE MAGNETIC CONTACTORS TO DROP OUT. 2. REDUCED VOLTAGE STARTING: REFER TO THE FOLLOWING TABLE. MULTIPLY THE CALCULATE ACROSS LINE SKVA BY THE MULTIPLIER LISTED FOR THE SPECIFIC STARTING METHOD. APPLY THE RESULT TO THE STARTING TABLE AS IN II A, TO CALCULATE THE EXPECTED VOLTAGE DIP: TYPE OF REDUCED MULTIPLY VOLTAGE STARTING LINE SKVA BY 80% TAP .80 65% TAP .65 50% TAP 50 45% TAP 45 Wye start, delta run .33 AUTOTRANSFORMER 80% TAP .68 65% TAP .46 50% TAP .29 NOTE: REDUCE VOLTAGE STARTING LOWERS THE MAXIMUM REQUIRED MOTOR skVA. 3. Part winding starting: Most common is half-winding start, full-winding run. Multiply the full motor, accross line starting skVA by 0.6. Apply the result to the selected curve as in ii. A above. Read the expected voltage dip, for the required skVA. **III.DEFINITION:** A. GENERATOR TERMS MODEL: Engine Sales model ENG TYPE: DI = Direct Injection, NA = Naturally aspirated, etc Running frequency, hertz HZ: RATING TYPE: PP, SB (prime power or standby) KW: Base rating electrical kilowatts (ekW) VOLTS: Rating terminal, line to line GEN ARR: Cat generator arrangement part number

GEN FRAME: Generator frame size designation

CONN: Generator output connection (star, wye, delta, ect.) POLES: Number of pole pieces on rotor. (eg. A 4 pole generator run at 1800) RPM will produce 60 Hz alternating current. A 6 pole generator run at 1200 RPM will produce 60 Hz alternating current.)

B. GENERATOR TEMPERATURE RISE: The indicated temperature rise indicated the NEMA limits for standby or prime power applications. These rises are used for calculating the losses and efficiencies and are not necessarily indicative of the actual temperature rise of a given machine.

C. CENTER OF GRAVITY

The specified center of gravity is for the generator only. For single bearing, and two bearing close coupled generators, the cent er of gravity is measured from the generator/engine flywheel housing i nterface and from the centerline of the rotor shaft.

For two bearing, standalone generators, the center of gravity is measu red from the end of the rotor shaft and from the centerline of the rot or shaft.

For two bearing, standalone generators, the center of gravity is measu red from the end of the rotor shaft and from the centerline of the rot or shaft.

D. GENERATOR DECREMENT CURRENT CURVES

The generator decrement current curve gives the symmetrical current supplied by the generator for a three phase bolted fault at the generator terminals. Generators equipped with the series boost attachment or generators with PM excitation system will supply 300% of rated current for at least 10 seconds.

E. GENERATOR EFFICIENCY CURVES The efficiency curve is representative of the overall generator efficiency over the normal range of the electrical load and at the specified parameters. This is not the overall engine generator set efficiency curve.

Caterpillar Confidential: Green

Content Owner: Commercial Processes Division Web Master(s): <u>PSG Web Based Systems Support</u> Current Date: 7/2/2020, 7:35:06 AM © Caterpillar Inc. 2020 All Rights Reserved. <u>Data Privacy Statement</u>.